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Abstract. A recent study [4] reveals that convergence of finite element methods usingH(div ,Ω)-
compatible finite element spaces deteriorates on non-affine quadrilateral grids. This phenomena is
particularly troublesome for the lowest-order Raviart-Thomas elements, because it implies loss of
convergence in some norms for finite element solutions of mixed and least-squares methods. In this
paper we propose reformulation of finite element methods, based on the natural mimetic divergence
operator [22], which restores the order of convergence.

Reformulations of mixed Galerkin and least-squares methods for the Darcy equation illustrate
our approach. We prove that reformulated methods converge optimally with respect to a norm
involving the mimetic divergence operator. Furthermore, we prove that standard and reformulated
versions of the mixed Galerkin method lead to identical linear systems, but the two versions of the
least-squares method are veritably different. The surprising conclusion is that the degradation of
convergence in the mixed method on non-affine quadrilateral grids is superficial, and that the lowest
order Raviart-Thomas elements are safe to use in this method. However, the breakdown in the
least-squares method is real, and there one should use our proposed reformulation.
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1. Introduction. We consider finite element solution of the elliptic boundary
value problem{

∇ · u + σΘ0p = f

∇p+ Θ−1
1 u = 0

in Ω and
p = 0 on ΓD

n · u = 0 on ΓN ,
(1.1)

where Ω ⊂ <2 has Lipschitz-continuous boundary ∂Ω = ΓD ∪ ΓN , n is the unit
outward normal to ∂Ω, Θ1 is a symmetric tensor, Θ0 is a real valued function, and σ
is a non-dimensional parameter that is either 0 or 1. Regarding Θ1 and Θ0 we will
assume that there exists a constant α > 0 such that for every x ∈ Ω and ξ ∈ <2

1
α
ξT ξ ≤ ξTΘ1(x)ξ ≤ αξT ξ and

1
α
≤ Θ0(x) ≤ α .(1.2)

Equations (1.1) are often called the Darcy problem and provide a simplified model
of a single phase flow in porous media. In this context, p is the pressure, u is the
Darcy velocity and Θ1 is the permeability tensor divided by the viscosity. The use of
this first-order system as a basis for a finite element method stems from the fact that
in porous media flow the vector variable u is more important than the pressure p.
In such cases numerical methods that compute accurate, locally conservative velocity
approximations are favored.
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Two such methods are the mixed Galerkin method [12] and the locally conserva-
tive least-squares method [7, 8, 14]. The main focus of this paper will be on imple-
mentations of these two methods with the lowest-order quadrilateral Raviart-Thomas
elements (RT0) [21, 12]. Several reasons motivate our interest in these elements.
Quadrilateral grids are widely used in the petroleum industry for porous media flow
simulations and there are connections between conservative finite difference methods
for (1.1) and mixed methods implemented with the lowest order H(div ,Ω)-compatible
spaces; see [1, 5, 24] and the references therein. Our study is also prompted by the
recent work of Arnold et al. [4]. This paper asserts that the accuracy of H(div ,Ω)-
conforming finite element spaces deteriorates on non-affine quadrilateral grids, which
in turn leads to reduced orders of convergence in finite element methods. Arnold et al.
[4] support this assertion by examples that show reduced convergence in H(div ,Ω)
of the vector variable in the mixed method, and examples which suggest that in the
least-squares method loss of accuracy also spreads to pressure approximations.

These examples are particularly damning for low-order elements because for them
the degradation of accuracy in the methods takes the form of a total loss of convergence
in some norms for one or both variables. The main goal of this paper is to restore
confidence in RT0 elements and show that with some simple modifications in the finite
element methods they can be safely used on general, shape regular, but not necessarily
affine quadrilateral grids.

The proposed reformulation of the mixed and least-squares methods is motivated
by mimetic finite difference methods [22]. A mimetic discretization of (1.1) uses the
so-called natural mimetic divergence, DIV and derived gradient, GRAD operators; see
[16, 17]. Of particular interest to us is DIV which is constructed using the coordinate-
invariant definition [2, p.188]

∇ · u(x) = lim
κ3x;µ(κ)→0

∫
∂κ

u · n dS

µ(κ)
(1.3)

of the divergence operator1. The result is a discrete operator2 that maps face-based
values (the fluxes of u) onto cell-based constants. Because DIV acts on the same set
of degrees of freedom as used to define the lowest-order Raviart-Thomas space, its
action can be extended to that space in a natural way. This is the key to our mimetic
reformulation of finite element methods, in which the main idea is to replace3 the
analytic divergence ∇· by the natural divergence DIV.

A somewhat unexpected byproduct of our analysis is a theorem which shows that
the mimetic reformulation of the mixed method is actually equivalent to its standard
version, in the sense that the two methods generate identical linear algebraic systems
with identical solutions. Since in the mimetic reformulation DIV(uh) converges to

1In this definition κ is a bounded region and µ(κ) denotes its measure. The mimetic approxima-
tion of ∇ ·u on an element κ, belonging to a finite element partition Th of Ω, is defined by the right
hand side in this formula, assuming that u and n are constant on the faces of κ.

2For brevity we call this operator “natural divergence”.
3A perfectly valid alternative solution is to divide each element into two affine triangles and

simply use an RT0 space on triangles [19]. Nonetheless, quadrilateral elements may still be favored
for the following reasons. When a quadrilateral grid is transformed into a triangular one by the above
procedure, the number of faces increases by a number equal to the number of elements in the original
mesh. Because in the RT0 space each face is associated with a degree of freedom, this means that the
size of the discretized problem will also increase by the same number without formally increasing its
accuracy. Second for problems with advection, quadrilateral grids are easier to align with the flow
which reduces the amount of artificial numerical diffusion.
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the divergence of the exact solution, it follows that the same must be true for the
solution of the standard mixed method. In other words, the flux degrees of freedom
in the mixed Galerkin solution do contain accurate information about the divergence
of the exact solution. The reason ∇· fails to recover this information on non-affine
quads is that it acts on the flux data indirectly via basis functions defined by the
Piola transform, which makes the result dependent upon the element shape4. In
contrast, DIV is able to always recover accurate divergence approximation because it
acts directly on the flux degrees of freedom, which makes its action independent of
the element shape. It follows that the loss of convergence in the mixed method is
superficial, and that this method can be safely used on non-affine quadrilateral grids.

Unlike the mixed method, mimetic reformulation of the least-squares method
turns out to be veritably different from its standard finite element realization and
the loss of convergence in this method, reported in [4], is genuine. We refine the
conclusions of [4] by showing that for Darcy problems that include a “reaction” term
(σ = 1) the loss of accuracy does not spread to the pressure approximation. However,
the “information content” of the velocity approximation is ruined and using DIV in
lieu of ∇· to extract divergence information does not help much. Thus, the breakdown
in the least-squares method is real and for general quadrilateral grids one should use
our proposed reformulation.

The paper is organized as follows. Section 2 reviews notation and definitions of
finite element spaces. Section 3 discusses the natural divergence operator, its proper-
ties, and extension to the lowest-order Raviart-Thomas elements. Section 4 presents
mimetic reformulations of mixed and least-squares methods. Section 5 contains anal-
yses of these methods. Numerical results are collected in Section 6.

2. Notation and quotation of results. For p > 0, Hp(Ω) denotes the Sobolev
space of order p with norm and inner product denoted by ‖·‖p and (·, ·)p, respectively.
When p = 0, we use the standard notation L2(Ω). The symbol |·|k, 0 ≤ k ≤ p, denotes
the kth seminorm on Hp(Ω), while H1

D(Ω) is the subspace of H1(Ω) consisting of all
functions that vanish on ΓD. The sets H(div ,Ω) = {u ∈ (L2(Ω))2 | ∇ ·u ∈ L2(Ω)} ,
and its subset HN (div ,Ω) = {v ∈ H(div ,Ω) | v ·n = 0 on ΓN} are Hilbert spaces
when equipped with the graph norm ‖u‖div = (‖u‖20 + ‖∇ · u‖20)1/2.

Throughout the paper Th is partition of Ω into convex quadrilateral elements κ,
Nh is the set of nodes xi in Th and Fh is the set of oriented faces f i in Th. A face
is oriented by choosing a unit normal nf and an element is oriented by choosing a
unit normal nκ to its boundary ∂κ. By default, all elements are oriented as sources
so that nκ is the outer unit normal to ∂κ.

We assume that the elements in Th satisfy the usual conditions required of finite
element partitions; see [13, pp.38–51]. In what follows we restrict attention to shape-
regular partitions Th where each κ is a bilinear image of the reference square κ̂ =
[−1, 1]2. We recall that for such partitions there exists a positive α such that

1
α
µ(κ) ≤ ‖detDΦκ‖∞,κ̂ ≤ αµ(κ) ∀κ ∈ Th ;(2.1)

see [15, p.105]. In (2.1) DΦκ(x̂) is the derivative of the bilinear function Φκ(x̂) that
maps κ̂ to a given quadrilateral κ. When the range of Φκ is clear from the context
we will skip the subscript κ. There also holds (see [15, p.105])

detDΦκ(x̂) > 0 ∀x̂ ∈ κ̂ and µ(κ) = detDΦκ(0, 0)µ(κ̂) .(2.2)

4This is also the reason why formal finite element analysis fails to recognize that the mixed
Galerkin solution does contain accurate divergence information.
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The first property follows from the convexity of each κ.
Pqr(V ) denotes polynomial functions on a region V ⊂ <2, whose degree in x and y

does not exceed q and r, respectively. Thus, P00(V ) is the set of constant polynomials
on V ; P11 is the set of bilinear polynomials on V and so on.

Since our focus is on low-order methods, for the mixed Galerkin method we con-
sider pressure approximations by the piecewise constant space

Q0 = {ph ∈ L2(Ω) | ph|κ ∈ P00(κ) ∀κ ∈ Th} ,(2.3)

and velocity approximations by the lowest-order Raviart-Thomas space

RT0 = {uh ∈ H(div ,Ω) |uh|κ = Pκ ◦ ûh; ûh ∈ P10(κ̂)× P01(κ̂) ∀κ ∈ Th},(2.4)

where Pκ = det(DΦ(x̂))−1DΦ(x̂) is the Piola transform; see [12, p.97]. The least-
squares method uses the same space for the velocity, and the C0 Lagrangian space

Q1 = {ph ∈ C0(Ω); ph|κ = p̂ ◦ Φ−1
κ ; p̂ ∈ P11(κ̂) ∀κ ∈ Th}(2.5)

for the pressure approximation.
Finite element spaces are restricted by boundary conditions. RTN0 is the subspace

of RT0 such that uh · n = 0 on ΓN , and QD1 is the subspace of Q1 such that ph = 0
on ΓD. No boundary conditions are imposed on Q0.

Remark 1. The mapping Φκ is affine if and only if κ is a parallelogram. There-
fore, in general, RT0 and Q1 are not piecewise polynomial spaces.

The unisolvent set of Q0 consists of the element averages

Λ(Q0) = {lκ | lκ(p) =
∫
κ

pdx; κ ∈ Th} ,(2.6)

the unisolvent set of Q1 is given by the nodal values

Λ(Q1) = {lx | lx(p) =
∫

Ω

δ(x)pdx; x ∈ Nh} ,(2.7)

and the unisolvent set for RT0 is the average flux across element faces

Λ(RT0) = {lf | lf (v) =
∫

f

v · n dS; f ∈ Fh} .(2.8)

The symbols {pκ}, {px}, and {uf} stand for the basis sets of Q0, Q1 and RT0, which
are dual to (2.6), (2.7) and (2.8), respectively; see [13, 12] for further details.
IQ0 , IQ1 , and IRT0 are the interpolation operators into Q0, Q1, and RT0, induced

by the degrees of freedom in (2.6)-(2.8). Domains of IQ1 and IRT0 consist of those
functions in H1(Ω) and H(div ,Ω) for which the functionals in (2.7) and (2.8) are
meaningful. For the domain of IRT0 we will use the space

W (Ω) = {u ∈ (Ls(Ω))2 | ∇ · u ∈ L2(Ω); s > 2} .(2.9)

With this choice IRT0 is uniformly bounded as an operator W 7→ RT0; see [12, p.125]:

‖Iu‖div ≤ C‖u‖W .(2.10)

When the range of the interpolation operator is clear from the type of its argument
we skip the space designation and simply write I.
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Approximation properties of interpolation operators are as follows. The L2 pro-
jection IQ0 is first-order accurate (see [15, p.108]):

‖p− IQ0p‖0 ≤ Ch‖p‖1 ∀p ∈ H1(Ω) .(2.11)

On shape-regular quadrilateral grids IRT0 is first-order5 accurate in L2:

‖u− IRT0u‖0 ≤ Ch‖u‖1 ∀u ∈ H1(Ω)2 ;(2.12)

see [4, Theorem 4.1]. The nodal interpolant IQ1 satisfies the error bound

‖p− IQ1p‖0 + h‖∇(p− IQ1p)‖0 ≤ Ch‖p‖2 ∀p ∈ H2(Ω) ;(2.13)

see [15, p.107] and [3]. Next lemma states an important property of the divergence
operator that will be needed later.

Lemma 2.1. Divergence is a surjective mapping HN (div ,Ω) ∩W (Ω) 7→ L2(Ω)
with a continuous lifting from L2(Ω) into HN (div ,Ω) ∩ W (Ω), that is, for every
q ∈ L2(Ω) there exists uq ∈ HN (div ,Ω) ∩W (Ω) such that

q = ∇ · uq and ‖uq‖W ≤ C‖q‖0 .(2.14)

For details we refer to [12, p.136].

3. Extension of DIV to RT0. Definition of the natural divergence DIV is based
on the coordinate-independent characterization of ∇ · u in (1.3), applied to each cell
κ ∈ Th. Let F∗h and T ∗h denote the duals of Fh and Th, i.e., collections of real numbers
{Ff}, {Kκ} associated with the oriented faces and cells in the mesh. Clearly, F∗h and
T ∗h are isomorphic6 to RT0 and Q0, respectively, and so, we denote their elements by
the same symbols.

The natural divergence is a mapping DIV : F∗h 7→ T ∗h defined by

DIV(uh)|κ =
1

µ(κ)

∑
f∈Fh(κ)

σfFf ; ∀κ ∈ Th ,(3.1)

where uh ∈ F∗h , Fh(κ) is the set of oriented faces of κ and

σf =

{
1 if nf = nκ

−1 if nf = −nκ

Note that Ff are also the degrees of freedom that define vector fields in RT0:

uh =
∑

f∈Fh

Ffuf ∀uh ∈ RT0 .

Therefore, the action of DIV can be extended to RT0 vector fields by simply adopt-
ing formula (3.1) to compute the discrete divergence of uh ∈ RT0. This defines an

5On non-affine grids the divergence error of Raviart-Thomas spaces drops by one order. As a
result, ∇ · IRT0 (u) does not converge to ∇ · u; see [4, Theorem 4.2]. However, as we shall see, the
natural divergence of the interpolant is first-order accurate.

6This is the key reason why many conservative finite difference methods for (1.1) can be related
to low-order implementations of the mixed method – both types of schemes share the same set of
degrees of freedom.
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operator DIV : RT0 7→ Q0 which we will use to reformulate mixed and least-squares
methods. It is easy to see that for the basis {uf} of RT0,

DIV(uf ) =
σf

µ(κ)
; ∀f ∈ Fh .(3.2)

The next lemma states an important property of the natural divergence.
Lemma 3.1. The natural divergence DIV has a pointwise Commuting Diagram

Property (CDP)

W (Ω) ∇·−→ L2(Ω)

IRT0 ↓ ↓ IQ0

RT0
DIV−→ Q0

(3.3)

Proof. We need to prove that DIV (IRT0u) = IQ0(∇ · u) for all u ∈ W (Ω). From
definition (3.1) and equation (3.2) it follows that

DIV (IRT0u) |κ = DIV
∑

f∈Fh(κ)

Ffuf =
1

µ(κ)

∑
f∈Fh(κ)

σfFf .

On the other hand, from (2.6) and the Divergence Theorem

IQ0 (∇ · u) |κ =
1

µ(κ)

∫
κ

∇ · u dx =
1

µ(κ)

∫
∂κ

u · n dS =
1

µ(κ)

∑
f∈Fh(κ)

∫
f

u · n dS .

CDP follows from the identity ∫
f

u · n dS = σfFf .

A discrete version of Lemma 2.1 holds for the natural divergence.
Lemma 3.2. The natural divergence is a surjective mapping RT0 7→ Q0 with a

continuous lifting from Q0 into RT0, that is, for every qh ∈ Q0 there exists uhq ∈ RT0

such that

qh = DIV(uhq ) and ‖uhq ‖0 + ‖DIV(uhq )‖0 ≤ C‖qh‖0 .(3.4)

Proof. To show that DIV is surjective we use CDP and the fact that analytic
divergence is a surjective mapping W (Ω) 7→ L2(Ω) (Lemma 2.1). Any qh ∈ Q0 is also
in L2(Ω) and so, there exists uq ∈ HN (div ,Ω) ∩W (Ω) such that ∇ · uq = qh. Let
uhq = IRT0(uq). From CDP it follows that DIV(uhq ) = IQ0(∇ · uq) = IQ0(qh) = qh.

Because by construction DIV(uhq ) = qh, to prove that the lifting of DIV from Q0

into RT0 is continuous it suffices to show that ‖uhq ‖0 = ‖IRT0(uq)‖0 ≤ ‖qh‖0. Using
(2.10) (uniform boundedness of IRT0) and (2.14) in Lemma 2.1 we see that

‖IRT0(uq)‖0 ≤ ‖IRT0(uq)‖div ≤ C‖uq‖W ≤ C‖qh‖0 .

This proves the lemma.
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Remark 2. According to Lemma 2.1 ∇· is surjection HN (div ,Ω) 7→ L2(Ω).
In the mixed method the domain and the range of this operator are approximated
by RT0 and Q0 elements, respectively. However, on non-affine quadrilateral grids
∇ · RT0 6= Q0 , and the surjective property connecting the domain and the range of
∇· is lost.7 By replacing the analytic divergence by DIV surjectivity is restored. As a
result, if RT0 is to approximate the domain of the divergence and Q0 - its range, then
the approximation of ∇·, which is compatible with its surjective property, is given by
DIV rather than ∇·. In other words, DIV provides a better approximation of ∇· on
RT0 than the usual finite element practice of restricting the analytic operator to the
finite element space. This fact validates the mimetic reformulation strategy presented
in the next two sections.

Remark 3. The surjective property of DIV, and its lack thereof in ∇·, is a direct
consequence of the way these operators act on the flux degrees of freedom. As we have
already noted in Section 1, DIV operates directly on these degrees of freedom, whereas
the action of ∇· is indirect via basis functions defined by the Piola transform. As a
result, the divergence approximation computed by DIV depends only on the flux data
and not on the element shape.

The following two lemmata will prove useful later.
Lemma 3.3. For every uh ∈ RT0 there holds∫

κ

∇ · uh dx =
∫
κ

DIV(uh) dx ; κ ∈ Th .(3.5)

Proof. It is enough to show (3.5) for a basis function uf associated with a face
f ∈ ∂κ. Using (3.2) and definition of the basis functions,∫

κ

DIV(uf ) dx =
σf

µ(κ)

∫
κ

dx = σf =
∫
∂κ

n · uf dS =
∫
κ

∇ · uf dx .

Lemma 3.4. Assume that Th is shape-regular. There is a positive constant CD
such that

‖∇ · uh‖0 ≤ CD‖DIV(uh)‖0 .(3.6)

Proof. It suffices to show (3.6) for one element κ and one basis function uf with
f ∈ ∂κ. After changing variables and noting that the Jacobian is positive (see (2.2))

‖∇ · uf‖20,κ =
∫
κ

(∇ · uf )(∇ · uf ) dx =
∫
κ̂

(∇x̂ · ûf̂ )(∇x̂ · ûf̂ )(detDΦ)−1 dx̂ ,

where f̂ is one of the faces of the reference element κ̂. From (2.4) and (2.8) it follows
that

ûf̂ =
1
4

[
1± x

0

]
or ûf̂ =

1
4

[
0

1± y

]
, and ∇x̂ · ûf̂ = 1/4 .

7The reason why stability of the mixed method is not ruined on such grids is that the following
weak CDP holds for ∇·: IQ0 (∇ · IRT0 (u)) = IQ0 (∇ · u), i.e.,Z

Ω
qh∇ · u dx =

Z
Ω
qh∇ · IRT0 (u) dx .

According to Fortin’s Lemma this is enough for the inf-sup condition to hold; see [12, p.138].
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Using the Mean Value Theorem, the lower bound in (2.1), (3.2), and µ(κ̂) = 4:

‖∇ · uf‖20,κ =
1
16

∫
κ̂

(detDΦ)−1 dx̂ =
µ(κ̂)

16 detDΦ(x̂∗)
≤ αµ(κ̂)

16µ(κ)
=
α

4
‖DIV(uf )‖20,κ .

Thus, (3.6) holds with CD = α/4.

4. Mimetic reformulation of finite element methods. We begin with a
brief summary of the standard mixed method [12] and the locally conservative least-
squares method [8]. For further information about related least-squares methods we
refer to [6, 14, 7] and the references cited therein.

4.1. Standard methods. The standard mixed finite element method for (1.1)
solves the following variational problem: seek uh ∈ RTN0 and ph ∈ Q0 such that

∫
Ω

uhΘ−1
1 vh dx−

∫
Ω

ph∇ · vh dx = 0 ∀vh ∈ RTN0∫
Ω

∇ · uhqh dx+ σ

∫
Ω

phΘ0q
h dx =

∫
Ω

fqh dx ∀qh ∈ Q0

.(4.1)

The second method in our study is a compatible least-squares method for (1.1). In
this method the finite element approximation is determined by seeking the minimizer
of the least-squares quadratic functional

J(ph,uh; f) = ‖Θ−1/2
0 (∇ · uh + σΘ0p

h − f)‖20 + ‖Θ1/2
1 (∇ph + Θ−1

1 uh)‖20(4.2)

in Uh = QD1 × RTN0 . The standard finite element implementation of this method
solves the following variational equation: seek {ph,uh} ∈ QD1 ×RTN0 such that

∫
Ω

(∇ph + Θ−1
1 uh)Θ1(∇qh + Θ−1

1 vh)dx

+
∫

Ω

(∇ · uh + σΘ0p
h)Θ−1

0 (∇ · vh + σΘ0q
h)dx

=
∫

Ω

fΘ−1
0 (∇ · vh + σΘ0q

h)dx ∀qh ∈ QD1 , ∀vh ∈ RTN0 .

(4.3)

The following theorem from [8] provides additional information about the stan-
dard least-squares method. It was used in [8] to conclude that (4.3) is locally conser-
vative.

Theorem 4.1. Assume that the reaction term is present in (1.1), i.e., σ = 1.
Then, the least-squares equation (4.3) decouples into independent problems for the
velocity: seek uh ∈ RTN0 such that∫

Ω

uhΘ−1vh dx+
∫

Ω

∇ · uhΘ−1
0 ∇ · vh dx =

∫
Ω

fΘ−1
0 ∇ · vh dx ∀vh ∈ RTN0 ;(4.4)

and the pressure: seek ph ∈ QD1 such that∫
Ω

∇phΘ1∇qh dx+
∫

Ω

phΘ0q
h dx =

∫
Ω

fqh dx ∀qh ∈ QD1 .(4.5)

If the grid is such that the analytic divergence is a surjective map RT0 7→ Q0, then
the solution of the weak problem (4.4) coincides with the velocity approximation in
the mixed method (4.1).
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For proof of this theorem we refer to [8]. On the positive side, Theorem 4.1 implies
that for problems with a reaction term the deterioration of accuracy should not spread
to the pressure approximation. This follows from the fact that equation (4.5) defines
the Ritz-Galerkin method for (1.1) which retains optimal orders of convergence on
general quadrilateral grids; see [13].

On the negative side, for non-affine quadrilateral elements the analytic divergence
does not map RT0 onto Q0 (see Remark 2) and so, solution of (4.4) will not coincide
with the velocity approximation in the mixed method. Considering that Theorem
5.1 below will show that the mixed method produces accurate velocities, this spells
potential trouble for the least-squares velocity.

Of course, in the absence of a reaction term (σ = 0) the least-squares equation
remains coupled. In this case we can expect deterioration of accuracy in both vari-
ables. Numerical tests in [4] confirm this conjecture. Section 6 will provide further
computational evidence to corroborate these conclusions.

4.2. Reformulated methods. We obtain mimetic reformulations of (4.1) and
(4.3) by swapping the analytic divergence with DIV. The reformulated mixed method
is: seek uh ∈ RTN0 and ph ∈ Q0 such that

∫
Ω

uhΘ−1
1 vh dx−

∫
Ω

phDIV(vh) dx = 0 ∀vh ∈ RTN0∫
Ω

DIV(uh)qh dx+ σ

∫
Ω

phΘ0q
h dx =

∫
Ω

fqh dx ∀qh ∈ Q0.

(4.6)

We make the usual identifications

ah(uh,vh) =
∫

Ω

uhΘ−1
1 vh dx and bh(uh, ph) =

∫
Ω

phDIV(uh) dx .

Note that ah(·, ·) and bh(·, ·) are defined only for finite element functions.
Reformulation of the least-squares method is: seek {ph,uh} ∈ QD1 × RTN0 such

that 

∫
Ω

(∇ph + Θ−1
1 uh)Θ1(∇qh + Θ−1

1 vh)dx

+
∫

Ω

(DIV(uh) + σΘ0p
h)Θ−1

0 (DIV(vh) + σΘ0q
h)dx

=
∫

Ω

fΘ−1
0 (DIV(vh) + σΘ0q

h)dx ∀qh ∈ QD1 , ∀vh ∈ RTN0 .

(4.7)

Remark 4. An existing finite element program for the standard mixed or the
least-squares method can be trivially converted to its mimetic reformulation by chang-
ing just a few lines of code. From (3.1), (2.2), and µ(κ̂) = 4 it follows that

DIV(uf )|κ =
σf

µ(κ)
=

σf

4 det(DΦ(0, 0))
.

As a result, the conversion to mimetic reformulations amounts to replacing multiple
calls to the function that computes ∇ · uf (x) at quadrature points, along with the
computation of detDΦ at those points, by a single call to compute det(DΦ(0, 0))
combined with a few Boolean operations related to the orientation choice σf .

Remark 5. An alternative approach that also restores the first-order convergence
in the divergence error has been proposed in [23]. The idea is to “correct” the standard
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RT0 basis on κ̂ so that the basis functions on any κ ∈ Th have constant divergence.
Correction is effected by adding a vector field defined with the help of detDΦκ which
makes the reference basis dependent upon the elements in Th. This should be contrasted
with our approach where the definition of the RT0 basis on κ̂ is unchanged and remains
independent of κ ∈ Th; instead one changes the definition of the divergence operator
on κ. Connection between a mixed method implemented with the modified RT0 space
and a mimetic finite difference scheme for (1.1) is shown in [10].

5. Properties of reformulated methods. This section examines stability and
convergence of the reformulated methods. We begin with the analysis of the reformu-
lated mixed method.

5.1. The mixed method. The following theorem shows that (4.1) and (4.6)
are equivalent.

Theorem 5.1. The standard mixed method (4.1) and its mimetic reformulation
(4.6) give rise to identical linear systems of equations for the unknown coefficients of
uh ∈ RTN0 and ph ∈ Q0, i.e., their solutions coincide.

Proof. The mixed problem (4.1) and its mimetic reformulation (4.6) reduce to
the linear systems of equations[

Mu DT

D Mp

] [
~u
~p

]
=
[
~0
~f

]
and

[
Mu D̃T

D̃ Mp

] [
~u
~p

]
=
[
~0
~f

]
,

respectively, for the unknown coefficients ~u, ~p of uh and ph. Here Mu and Mp are
the consistent mass matrices for RT0 and Q0 finite element spaces, respectively. The
matrices D and D̃ are given by their respective entries

Df ,κ =
∫

Ω

pκ∇ · uf dx and D̃f ,κ =
∫

Ω

pκDIV(uf ) dx , f ∈ Fh, κ ∈ Th .

The theorem will follow if we can show that Df ,κ = D̃f ,κ. Let κ be fixed and f
one of its faces. The basis function pκ = 1/µ(κ) is constant on κ and pκ = 0 on all
other elements. Therefore, using (3.5) from Lemma 3.3 it follows that

Df ,κ =
∫

Ω

pκ∇ · uf dx =
1

µ(κ)

∫
κ

∇ · uf dx

=
1

µ(κ)

∫
κ

DIV(uf ) dx =
∫

Ω

pκDIV(uf ) dx = D̃f ,κ .

Remark 6. D. Boffi brought to our attention a similar equivalence result [9]
for two modifications of a primal finite element method for the Maxwell’s eigenvalue
problem8 defined by using a local L2 projection and reduced integration, respectively.
From (3.3) in Lemma 3.1 DIV

(
uh
)

= IQ0(∇ · uh) for all uh ∈ RT0, from where it
follows that the first approach of [9] is equivalent to our mimetic reformulation.

In light of this theorem we could in principle skip a formal stability analysis of
the reformulated mixed method because we already know that the discrete system
in the standard mixed method is well-behaved. However, a separate stability proof

8Finite element solution of this problem in two dimensions requires “rotated” RT elements which
suffer from the same accuracy problems as standard RT elements on non-affine quadrilateral grids.
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for (4.6) will be very convenient for the error estimates where we will work with the
discrete norm ‖uh‖DIV = (‖uh‖20 + ‖DIV(uh)‖20)1/2. The proofs are stated for the case
σ = 0. The extension to σ = 1 is straightforward.

Lemma 5.2. Let Zh = {uh ∈ RT0 |DIV(uh) = 0} denote the null-space of DIV.
The form ah(·, ·) is coercive on Zh × Zh:

Ca‖vh‖2 ≤ ah(vh,vh) ∀vh ∈ Zh .(5.1)

The form bh(·, ·) satisfies a discrete inf-sup condition:

sup
vh∈RT0

bh(vh, ph)
‖vh‖DIV

≥ Cb‖ph‖0 ∀ph ∈ Q0 .(5.2)

Proof. The first statement is a direct consequence of the definition of Zh and
condition (1.2) on the tensor Θ1. To prove the inf-sup condition we proceed as follows.
Let ph ∈ Q0 be arbitrary. From Lemma 3.2 we know that there exists a uhp ∈ RT0

such that (3.4) holds. Therefore,

sup
vh∈RT0

bh(vh, ph)
‖vh‖DIV

≥
bh(uhp , p

h)
‖uhp‖DIV

≥ ‖ph‖20
‖uhp‖DIV

≥ C‖ph‖0 .

Lemma 5.2 directly implies the following stability result.
Theorem 5.3. Define the discrete bilinear operator

Qh(uh, ph; vh, qh) = ah(uh,vh)− bh(vh, ph) + bh(uh, qh) .

There exists a positive constant CQ such that

sup
(vh,qh)∈RTN

0 ×Q0

Qh(uh, ph; vh, qh)
‖vh‖DIV + ‖qh‖0

≥ CQ
(
‖uh‖DIV + ‖ph‖0

)
.(5.3)

We can now prove optimal error estimates for (4.6).
Theorem 5.4. Assume that (2.1) holds for the finite element partition Th and

that the exact solution of (1.1) is such that p ∈ H1
D(Ω) and u ∈ HN (div ,Ω) ∩

(H2(Ω))2. Solution of the reformulated mixed problem (4.6) satisfies the error bound

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖0 ≤ Ch (‖u‖2 + ‖p‖1) .(5.4)

Proof. To avoid tedious technical details, we limit the proof to the case Θ1 = I.
We begin by splitting the left hand side in (5.4) into interpolation error and discrete
error:

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖0

≤ (‖∇ · u− DIVI(u)‖0 + ‖u− Iu‖0 + ‖p− Ip‖0)

+
(
‖DIVI(u)− DIV(uh)‖0 + ‖Iu− uh‖0 + ‖Ip− ph‖0

)
= EI + Eh .

The next step is to estimate the discrete error Eh in terms of the interpolation er-
ror EI . We make use of the fact that for (vh, qh) ∈ RTN0 ×Q0∫

Ω

uhvh dx−
∫

Ω

phDIV(vh) dx = 0 =
∫

Ω

uvh dx−
∫

Ω

p∇ · vh dx(5.5)
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and ∫
Ω

qhDIV(uh) dx =
∫

Ω
fqh dx =

∫
Ω

qh∇ · u dx .(5.6)

For brevity we switch to inner product notation. Adding and subtracting Iu and Ip
in (5.5) we obtain(
u− Iu,vh

)
+
(
Iu− uh,vh

)
−
(
p− Ip,∇ · vh

)
−
(
Ip,∇ · vh

)
+
(
ph,DIV(vh)

)
= 0 .

As Ip is constant, by Lemma (3.3) we can replace
(
Ip,∇ · vh

)
by
(
Ip,DIV(vh)

)
, thus(

uh − Iu,vh
)

+
(
Ip− ph,DIV(vh)

)
=
(
u− Iu,vh

)
+
(
Ip− p,∇ · vh

)
.(5.7)

Adding and subtracting I(∇ · u) in (5.6) yields(
∇ · u− I(∇ · u), qh

)
+
(
I(∇ · u)− DIV(uh), qh

)
= 0.

Using CDP, (
DIV(uh − Iu), qh

)
=
(
∇ · u− DIV(Iu), qh

)
.(5.8)

Substituting (uh − Iu, Ip− ph) into the inf-sup result (5.3), we get

Qh(uh − Iu, Ip− ph; vh, qh)

≥ CQ
(
‖uh − Iu‖0 + ‖DIV(uh − Iu)‖0 + ‖ph − Ip‖0

)
×
(
‖vh‖0 + ‖DIV(vh)‖0 + ‖qh‖0

)
.

On the other hand, due to the definition of Qh, (5.7), (5.8), Cauchy inequalities, and
Lemma 3.4,

Qh(uh − Iu, Ip− ph; vh, qh)

=
(
u− Iu,vh

)
+
(
Ip− p,∇ · vh

)
+
(
∇ · u− DIV(Iu), qh

)
≤ (‖u− Iu‖0 + ‖p− Ip‖0 + ‖∇ · u− DIV(Iu)‖0)

×
(
‖vh‖0 + CD‖DIV(vh)‖0 + ‖qh‖0

)
,

for a positive constant CD. It is safe to assume CD ≥ 1 (without loss of generality),
thus

(
‖vh‖0 + CD‖DIV(vh)‖0 + ‖qh‖0

)
≤ CD

(
‖vh‖0 + ‖DIV(vh)‖0 + ‖qh‖0

)
, which,

combined with the previous two estimates of Qh, yields

Eh = ‖uh − Iu‖0 + ‖DIV(uh − Iu)‖0 + ‖ph − Ip‖0

≤ CD
CQ

(‖u− Iu‖0 + ‖p− Ip‖0 + ‖∇ · u− DIV(Iu)‖0) =
CD
CQ

EI .

Therefore,

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖0 ≤
(

1 +
CD
CQ

)
EI .(5.9)
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The remainder of the proof follows from CDP, (2.11), and (2.12). We have

‖∇ · u− DIV(Iu)‖0 = ‖∇ · u− I(∇ · u)‖0 ≤ Ch‖∇ · u‖1,

and

‖u− Iu‖0 + ‖p− Ip‖0 ≤ Ch (‖u‖1 + ‖p‖1) ,

i.e.,

EI ≤ Ch (‖∇ · u‖1 + ‖u‖1 + ‖p‖1) ≤ Ch (‖u‖2 + ‖p‖1) ,

which establishes (5.4).

Remark 7. The presence of the constant CD in (5.9) indicates that the size of
the approximation error is directly related to assumption (2.1) on the shape-regularity
of the finite element partition Th.

5.2. The least-squares method. It is easy to see that the equivalence result of
Theorem 5.1 cannot be extended to the least-squares method. To convince ourselves
that the mimetic reformulation (4.7) of this method is genuinely different from its
standard version (4.3) let us examine the term∫

Ω

(DIV(uh) + σΘ0p
h)Θ−1

0 (DIV(vh) + σΘ0q
h)dx

from (4.7). It is clear that for the same reasons as stated in Remark 2, on a non-affine
quadrilateral element∫

Ω

DIV(uh)Θ−1
0 DIV(vh)dx 6=

∫
Ω

∇ · uhΘ−1
0 ∇ · vhdx.

The cross terms also don’t match because in the least-squares method ph ∈ Q1 is not
constant and cannot be pulled out of the integral as in Theorem 5.1. Thus,∫

Ω

qhDIV(uh)dx 6=
∫

Ω

qh∇ · uhdx .

Another difference between the two versions of the least-squares method is that
the splitting in Theorem 4.1 does not extend to the mimetic reformulation (4.7). This
would require the discrete Green’s identity∫

Ω

phDIV(uh) dx+
∫

Ω

uh∇ph dx = 0 ∀uh ∈ RTN0 ; ∀ph ∈ QD1 ,

which in general does not hold. Therefore, velocity computed by (4.7) is not locally
conservative in the sense described in [8]. This can be fixed by using the flux-correction
procedure defined in [8].

The following theorem asserts stability of the reformulated least-squares method.
Theorem 5.5. Assume that (2.1) holds. There is a positive constant C such that

C
(
‖DIV(uh)‖0 + ‖uh‖0 + ‖ph‖1

)
≤ ‖Θ−1/2

0

(
DIV(uh) + Θ0p

h
)
‖0 + ‖Θ1/2

1 (∇ph + Θ−1
1 uh)‖0 .

(5.10)
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for every uh ∈ RTN0 and ph ∈ QD1 .
Proof. To avoid simple but tedious technical details we state the proof for Θ1 = I

and Θ0 = 1. In this case, the right hand side in (5.10) expands into

‖DIV(uh) + ph‖20 + ‖∇ph + uh‖20 = 2
(∫

Ω

phDIV(uh) dx+
∫

Ω

uh∇ph dx
)

+‖uh‖20 + ‖DIV(uh)‖20 + ‖ph‖20 + ‖∇ph‖20 .

We switch to inner product notation. Adding and subtracting the projection of ph

onto Q0, using Green’s identity, equation (3.5) in Lemma 3.3, and Cauchy’s inequality:(
DIV(uh), ph

)
+
(
∇ph,uh

)
=
(
DIV(uh), ph − IQ0p

h
)

+
(
DIV(uh), IQ0p

h
)
−
(
∇ · uh, ph

)
=
(
DIV(uh), ph − IQ0p

h
)

+
(
∇ · uh, IQ0p

h − ph
)

≤ ‖DIV(uh)‖0‖ph − IQ0p
h‖0 + ‖∇ · uh‖0‖ph − IQ0p

h‖0 .

Using (3.6) from Lemma 3.4, the approximation result (2.11), and the inequality
2ab ≤ a2 + b2

2
((

DIV(uh), ph
)

+
(
∇ph,uh

))
≤ 2(1 + CD)Ch‖DIV(uh)‖0‖∇ph‖0 ≤ (1 + CD)Ch

(
‖DIV(uh)‖20 + ‖∇ph‖20

)
As a result, for sufficiently small h

‖DIV(uh) + ph‖20 + ‖∇ph + uh‖20

≥ (1− (1 + CD)Ch)
(
‖uh‖20 + ‖DIV(uh)‖20 + ‖ph‖20 + ‖∇ph‖20

)
≥ 1

2
(
‖uh‖20 + ‖DIV(uh)‖20 + ‖ph‖21

)
.

Theorem 5.5 in conjunction with the Lax-Milgram lemma implies that the refor-
mulated least-squares problem has a unique solution. Using this theorem we can also
prove optimal error estimates for the solution of (4.7).

Theorem 5.6. Assume that (2.1) holds for the finite element partition Th and
that the exact solution of (1.1) is such that p ∈ H1

D(Ω)∩H2(Ω) and u ∈ HN (div ,Ω)∩
(H2(Ω))2. Solution of the reformulated least-squares problem (4.7) satisfies the error
bound

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖1 ≤ Ch (‖p‖2 + ‖u‖2)(5.11)

Proof. For clarity we state the proof using the same setting as in the proof of
Theorem 5.5. We begin by splitting the left hand side in (5.11) into interpolation
error and discrete error:

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖1

≤ (‖∇ · u− DIVI(u)‖0 + ‖u− Iu‖0 + ‖p− Ip‖1)

+
(
‖DIVI(u)− DIV(uh)‖0 + ‖Iu− uh‖0 + ‖Ip− ph‖1

)
= EI + Eh .



Rehabilitation of quadrilateral RT elements 15

The next step is to estimate Eh in terms of the interpolation error. For this purpose,
we use that f = ∇ · u + p and 0 = ∇p+ u to write (4.7) as(

DIV(uh) + ph,DIV(vh) + qh
)

+
(
∇ph + uh,∇qh + vh

)
=
(
∇ · u + p,DIV(vh) + qh

)
+
(
∇p+ u,∇qh + vh

)
.

Subtracting the interpolants of p and u from both sides of this identity, and using
Cauchy’s inequality gives(

DIV(uh − Iu) + ph − Ip,DIV(vh) + qh
)
+
(
∇(ph − Ip) + uh − Iu,∇qh + vh

)
=
(
∇·u− DIV(Iu)+p− Ip,DIV(vh) + qh

)
+
(
∇(p− Ip) + u− Iu,∇qh + vh

)
≤ C(‖∇·u− DIV(Iu)‖0+‖u− Iu‖0+‖p− Ip‖1)

(
‖DIV(vh)‖0+‖vh‖0+‖qh‖1

)
≤ CEI ×

(
‖DIV(vh)‖0+‖vh‖0+‖qh‖1

)
.

Then we set vh = uh − Iu, qh = ph − Ip and use the stability bound (5.10):

E2
h ≤ C

(
DIV(uh − Iu) + ph − Ip,DIV(uh − Iu) + ph − Ip

)
+
(
∇(ph − Ip) + uh − Iu,∇(ph − Ip) + uh − Iu

)
≤ CEI × Eh .

Therefore, Eh ≤ CEI and

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖1 ≤ (1 + C)EI .

To complete the proof we estimate EI as follows. Using CDP (3.3) and (2.11),

‖∇ · u− DIVI(u)‖0 = ‖∇ · u− I(∇ · u)‖0 ≤ Ch‖∇ · u‖1 ,

while from (2.12) and (2.13) we have that

‖u− Iu‖0 + ‖p− Ip‖1 ≤ Ch (‖u‖1 + ‖p‖2) ,

Therefore,

EI ≤ Ch (‖p‖2 + ‖u‖2) .

This establishes (5.11).

6. Numerical results. Computational experiments in this section illustrate the
properties of standard and reformulated finite element methods using three different
partitions of Ω = [0, 1]2 into quadrilateral elements; see Fig. 6.1. We refer to the
leftmost partition in this figure as the “trapezoidal grid”. This grid was used by
Arnold et. al. [4] to demonstrate loss of accuracy in div-conforming elements and is
characterized by a high-degree of “non-affinity”. The middle partition corresponds
to a randomly perturbed9 uniform grid which provides a more realistic example of a

9This grid was suggested by one of the anonymous referees and is defined as follows. We start
with a uniform partition of Ω into square elements with side lengths h and draw a circle of radius
h/4 around each node. All internal nodes are then randomly repositioned inside these circles, corner
nodes are held fixed and the rest of the nodes on the boundary are moved randomly along the sides
of Ω within ±h/4 of their original locations.
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17 x 17 trapezoidal Grid 17 x 17 random Grid 17 x 17 sinusoidal Grid

Fig. 6.1. Quadrilateral grids used in the computational experiments. From left to right: trape-
zoidal grid [4], randomly perturbed grid and sinusoidal grid [20].

highly non-affine quadrilateral grid. The rightmost partition in Fig. 6.1 is taken from
[20] and provides an example of a smooth non-orthogonal grid10 which may become
quite distorted while retaining “near-affinity” of most of its quadrilateral elements.
This grid is used to underscore the fact that the root cause for the loss of convergence
is non-afffinity of the grid rather than the level of its distortion.

We show that on the first two partitions, i.e., on trapezoidal and random grids:
• the natural divergence of the velocity approximation in the standard mixed

method is first-order accurate, i.e., it is optimally accurate;
• the deterioration of accuracy in the least-squares method does not spread

to the pressure approximation if the reaction term is present, but that the
velocity approximation is worse than in the mixed method;

• without the reaction term, the deterioration of accuracy affects all variables
in the least-squares method;

• the mimetic reformulation of the least-squares method solves all these prob-
lems and yields optimally accurate pressure and velocity approximations.

As far as the last partition is concerned, we show that thanks to the almost affine
nature of the sinusoidal grid there’s virtually no degradation of accuracy in mixed
and least-squares methods.

The linear systems are assembled using 2 × 2 Gauss quadrature and solved “ex-
actly” using direct solvers. The order of convergence study solves (1.1) with ΓN = ∅,

Θ1 =
[

exp((x+ y/2)/2) sin(2πx)
sin(2πx) exp((x/2 + y)/2)

]
, Θ0 = 1 ,

and the right hand side and boundary data generated from the manufactured solution

p = − exp(x) sin(y), and u = −Θ1∇p .

Orders of convergence are estimated using data on 33 × 33, 65 × 65 and 129 × 129
grids with 1024, 4096 and 16384 elements, respectively.

The maximum anisotropy of Θ1 is is attained at the top right corner of Ω and
equals 4 exp(3/2) ≈ 18. The non-constant full tensor permeability is used only in

10The nodal positions in this grid are defined by

x(ξ, η, t) = ξ + α(t) sin(2πξ) sin(2πη) , and y(ξ, η, t) = η + α(t) sin(2πξ) sin(2πη) ,

respectively, where α(t) ≤ 0.1 and t is real parameter between 0 and 1; see [20]. The grid shown in
Fig. 6.1 corresponds to t = 0.5 and α(t) = t/5.
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Table 6.1
Error data and estimated orders of convergence for the standard mixed Galerkin method (MG)

and its mimetic reformulation (RMG) on trapezoidal grids.

error method 33× 33 65× 65 129× 129 order
‖p− ph‖0 MG 0.179E-01 0.893E-02 0.447E-02 0.9999

RMG 0.179E-02 0.893E-02 0.447E-02 0.9999

‖u− uh‖0 MG 0.652E-01 0.325E-01 0.162E-01 1.0029
RMG 0.652E-01 0.325E-01 0.162E-01 1.0029

‖∇ · u−∇ · uh‖0 MG 0.117E+01 0.110E+01 0.109E+01 0.0211
RMG 0.117E+01 0.110E+01 0.109E+01 0.0211

‖∇ · u− DIV(uh)‖0 MG 0.440E+00 0.220E+00 0.110E+00 1.0000
RMG 0.440E+00 0.220E+00 0.110E+00 1.0000

Table 6.2
Error data and estimated orders of convergence for the standard mixed Galerkin method (MG)

and its mimetic reformulation (RMG) on randomly perturbed grids.

error method 33× 33 65× 65 129× 129 order
‖p− ph‖0 MG 0.170E-01 0.848E-02 0.424E-02 1.000

RMG 0.170E-01 0.848E-02 0.424E-02 1.000

‖u− uh‖0 MG 0.611E-01 0.308E-01 0.155E-01 1.000
RMG 0.611E-01 0.308E-01 0.155E-01 1.000

‖∇ · u−∇ · uh‖0 MG 0.975E+00 0.890E+00 0.875E+00 0.025
RMG 0.975E+00 0.890E+00 0.875E+00 0.025

‖∇ · u− DIV(uh)‖0 MG 0.464E+00 0.232E+00 0.116E+00 1.000
RMG 0.464E+00 0.232E+00 0.116E+00 1.000

Table 6.3
Error data and estimated orders of convergence for the standard mixed Galerkin method on

sinusoidal grids.

error 33× 33 65× 65 129× 129 order
‖p− ph‖0 0.184E-01 0.902E-02 0.449E-02 1.007

‖u− uh‖0 0.638E-01 0.318E-01 0.159E-01 1.001

‖∇ · u−∇ · uh‖0 0.576E+00 0.288E+00 0.144E+00 0.999

‖∇ · u− DIV(uh)‖0 0.541E+00 0.271E+00 0.135E+00 0.999

order to make the tests more “realistic” and is not necessary at all to elicit the loss
of convergence in the two standard methods. The latter can be observed even in the
trivial case of Θ1 = I where I is a 2× 2 unit matrix; see [4].

The mixed method and its reformulation. The presence of the reaction term in
(1.1) or lack thereof do not affect the overall behavior of the computed error. For
brevity, results without this term (σ = 0) are omitted. Error data and estimated
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Table 6.4
Error data and estimated orders of convergence for the standard least-squares method (LS) and

its mimetic reformulation (RLS) on trapezoidal grids: problem (1.1) with reaction term (σ = 1).

error method 33× 33 65× 65 129× 129 order
‖p− ph‖0 LS 0.863E-04 0.216E-04 0.541E-05 1.998

RLS 0.876E-04 0.219E-04 0.549E-05 1.998

‖∇(p− ph)‖0 LS 0.1592E-01 0.799E-02 0.401E-02 0.997
RLS 0.1592E-01 0.799E-02 0.401E-02 0.997

‖u− uh‖0 LS 0.675E-01 0.362E-01 0.225E-01 0.683
RLS 0.652E-01 0.325E-01 0.162E-01 1.003

‖∇ · u−∇ · uh‖0 LS 0.115E+01 0.109E+01 0.107E+01 0.021
RLS – – – –

‖∇ · u− DIV(uh)‖0 LS 0.479E+00 0.285E+00 0.210E+00 0.439
RLS 0.440E+00 0.220E+00 0.110E+00 1.000

convergence rates for (4.1) and its mimetic reformulation (4.6) on trapezoidal and
randomly perturbed grids are summarized in Tables 6.1–6.2. The tables show iden-
tical11 errors for both versions of the mixed method, which confirms the assertion of
Theorem 5.1 that their solutions coincide.

As predicted by Theorem 5.1, when the divergence error of the velocity approx-
imation is measured directly by DIV instead of indirectly by ∇·, the order of conver-
gence improves to 1. This validates our assertion that the loss of convergence in the
mixed method is superficial rather than real. It follows that a standard implemen-
tation of this method with the lowest-order Raviart-Thomas element is safe to use
on general quadrilateral grids, as long as one remembers to extract the divergence
information using DIV.

Table 6.3 shows error data and estimated convergence rates for the standard
mixed method on the sinusoidal grid. Owing to the fact that this grid is nearly affine,
the rates of convergence measured by using the analytic and the mimetic divergence
operators are identical despite the small variations in their values.

The least-squares method and its reformulation. Theorem 4.1 suggests that the
reaction term could be very important for the standard least-squares method. This
turns out to be the case. Tables 6.4–6.5 show error data for (4.3) and (4.7) with this
term (σ = 1) on trapezoidal and randomly perturbed grids, respectively. For the
velocity in the standard method on both grids we see a reduced order of convergence
in the L2-norm and an almost complete loss of convergence in the divergence error.
It is worth pointing out that using DIV to extract the divergence information from
the standard least-squares solution does not help much. Nevertheless, the order of
convergence in the divergence error is somewhat improved.

As predicted by Theorem 4.1, when the reaction term is present the loss of accu-
racy does not spread to the pressure approximation in the standard method. Tables
6.4–6.5 show the expected second and first-order convergence for the L2 and H1-
seminorm errors of this variable, respectively.

11To avoid data variations caused by the randomness of the grid, for each grid size the two methods
were run on the same instance of the random mesh.
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Table 6.5
Error data and estimated orders of convergence for the standard least-squares method (LS) and

its mimetic reformulation (RLS) on randomly perturbed grids: problem (1.1) with reaction term
(σ = 1).

error method 33× 33 65× 65 129× 129 order
‖p− ph‖0 LS 0.650E-04 0.167E-04 0.414E-05 2.008

RLS 0.733E-04 0.200E-04 0.505E-05 1.984

‖∇(p− ph)‖0 LS 0.146E-01 0.734E-02 0.366E-02 1.003
RLS 0.148E-01 0.742E-02 0.372E-02 0.996

‖u− uh‖0 LS 0.627E-01 0.326E-01 0.185E-01 0.815
RLS 0.611E-01 0.308E-01 0.154E-01 0.999

‖∇ · u−∇ · uh‖0 LS 0.942E+00 0.882E+00 0.858E+00 0.040
RLS – – – –

‖∇ · u− DIV(uh)‖0 LS 0.484E+00 0.271E+00 0.190E+00 0.511
RLS 0.463E+00 0.232E+00 0.116E+00 1.001

Table 6.6
Error data and estimated orders of convergence for the standard least-squares method (LS) and

its mimetic reformulation (RLS) on trapezoidal grids: problem (1.1) without reaction term (σ = 0).

error method 33× 33 65× 65 129× 129 order
‖p− ph‖0 LS 0.175E-02 0.150E-02 0.144E-02 0.060

RLS 0.378E-03 0.947E-04 0.237E-04 1.999

‖∇(p− ph)‖0 LS 0.201E-01 0.136E-01 0.114E-01 0.254
RLS 0.161E-01 0.801E-02 0.401E-02 0.999

‖u− uh‖0 LS 0.676E-01 0.363E-01 0.227E-01 0.678
RLS 0.652E-01 0.325E-01 0.162E-01 1.003

‖∇ · u−∇ · uh‖0 LS 0.115E+01 0.109E+01 0.107E+01 0.021
RLS – – – –

‖∇ · u− DIV(uh)‖0 LS 0.479E+00 0.285E+00 0.211E+00 0.437
RLS 0.440E+00 0.220E+00 0.110E+00 1.000

In the absence of the reaction term, the standard least-squares method fares much
worse. Tables 6.6–6.7 show that the loss of accuracy on trapezoidal and randomly
perturbed grids when σ = 0 affects both variables. We see that without the reaction
term, the L2 order of convergence of the pressure is completely ruined, and the H1-
seminorm error is severely reduced. These results are consistent with the numerical
data on trapezoidal grids presented in [4] and confirm that, unlike in the mixed
method, the loss of accuracy in the least-squares method is real. Inclusion of the
reaction term helps to stem the deterioration of the pressure approximation but, as
a whole, the standard version of the least-squares method cannot be deemed robust
enough for general quadrilateral grids.

As expected, the mimetic reformulation of the least-squares method completely
eliminates these problems. From the data in Tables 6.4–6.7 we see that the reformu-
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Table 6.7
Error data and estimated orders of convergence for the standard least-squares method (LS) and

its mimetic reformulation (RLS) on random grids: problem (1.1) without reaction term (σ = 0).

error method 33× 33 65× 65 129× 129 order
‖p− ph‖0 LS 0.123E-02 0.101E-02 0.951E-03 0.082

RLS 0.396E-03 0.973E-04 0.251E-04 1.956

‖∇(p− ph)‖0 LS 0.169E-01 0.104E-01 0.793E-02 0.388
RLS 0.152E-01 0.745E-02 0.373E-02 0.997

‖u− uh‖0 LS 0.624E-01 0.328E-01 0.186E-01 0.816
RLS 0.610E-01 0.308E-01 0.153E-01 1.005

‖∇ · u−∇ · uh‖0 LS 0.930E+00 0.874E+00 0.861E+00 0.021
RLS – – – –

‖∇ · u− DIV(uh)‖0 LS 0.489E+00 0.273E+00 0.186E+00 0.553
RLS 0.463E+00 0.233E+00 0.116E+00 1.003

Table 6.8
Error data and estimated orders of convergence for the standard least-squares method (LS) on

sinusoidal grids: problem (1.1) with (sigma = 1) and without (sigma = 0) reaction term.

error method 33× 33 65× 65 129× 129 order
‖p− ph‖0 σ = 0 0.598E-03 0.151E-03 0.379E-04 1.996

σ = 1 0.158E-03 0.400E-04 0.100E-04 1.996

‖∇(p− ph)‖0 σ = 0 0.184E-01 0.902E-02 0.449E-02 1.007
σ = 1 0.179E-01 0.896E-02 0.448E-02 1.000

‖u− uh‖0 σ = 0 0.638E-01 0.318E-01 0.159E-01 1.001
σ = 1 0.638E-01 0.318E-01 0.159E-01 1.001

‖∇ · u−∇ · uh‖0 σ = 0 0.576E+00 0.288E+00 0.144E+00 1.000
σ = 1 0.576E+00 0.288E+00 0.144E+00 1.000

‖∇ · u− DIV(uh)‖0 σ = 0 0.541E+00 0.271E+00 0.135E+00 1.000
σ = 1 0.541E+00 0.271E+00 0.135E+00 1.000

lation restores the optimal order of convergence for all variables regardless of whether
or not the reaction terms is included.

Finally, Table 6.8 shows error and convergence data for the standard least-squares
method on sinusoidal grids. We see that despite the highly distorted nature of this
grid, the fact that most of its elements remain close to affine quads is enough to restore
convergence rates for all variables.

7. Conclusions. The mimetic reformulation, proposed in this paper, is a simple
yet effective approach to restore convergence of finite element methods that employ
the lowest-order quadrilateral Raviart-Thomas elements.

By proving that the reformulation of the mixed method is equivalent to its stan-
dard version, we establish that the loss of convergence in this method is benign and
can be avoided by using DIV to compute the divergence of the velocity approximation.
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Our results also show that the deterioration of accuracy in the least-squares
method is real. For problems with a reaction term it is confined to the velocity ap-
proximation, but without this term, the loss of convergence spreads to both variables.
The mimetic reformulation of the least-squares method mitigates convergence prob-
lems and should be used whenever computations with this method involve non-affine
quadrilateral grids.
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